Spinal Partitions and Invariance under Re-rooting of Continuum Random Trees by Bénédicte Haas,
نویسندگان
چکیده
We develop some theory of spinal decompositions of discrete and continuous fragmentation trees. Specifically, we consider a coarse and a fine spinal integer partition derived from spinal tree decompositions. We prove that for a two-parameter Poisson–Dirichlet family of continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine partition is obtained from the coarse one by shattering each of its parts independently, according to the same law. As a second application of spinal decompositions, we prove that among the continuous fragmentation trees, stable trees are the only ones whose distribution is invariant under uniform re-rooting.
منابع مشابه
2 4 M ay 2 00 7 Spinal partitions and invariance under re - rooting of continuum random trees ∗
We develop some theory of spinal decompositions of discrete and continuous fragmentation trees. Specifically, we consider a coarse and a fine spinal integer partition derived from spinal tree decompositions. We prove that for a two-parameter Poisson-Dirichlet family of continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine partition is obtained from the coa...
متن کاملSpinal partitions and invariance under re-rooting of continuum random trees
We develop some theory of spinal decompositions of discrete and continuous fragmentation trees. Specifically, we consider a coarse and a fine spinal integer partition derived from spinal tree decompositions. We prove that for a two-parameter Poisson–Dirichlet family of continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine partition is obtained from the coa...
متن کاملContinuum Tree Asymptotics of Discrete Fragmentations and Applications to Phylogenetic Models by Bénédicte Haas, Grégory Miermont, Jim Pitman
Given any regularly varying dislocation measure, we identify a natural self-similar fragmentation tree as scaling limit of discrete fragmentation trees with unit edge lengths. As an application, we obtain continuum random tree limits of Aldous’s beta-splitting models and Ford’s alpha models for phylogenetic trees. This confirms in a strong way that the whole trees grow at the same speed as the ...
متن کاملOn the re-rooting invariance property of Lévy trees
We prove a strong form of the invariance under re-rooting of the distribution of the continuous random trees called Lévy trees. This extends previous results due to several authors.
متن کاملScaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees
We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers, that determine how the size of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009